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ABSTRACT 

A key aim of current systems biology research is to understand biology at the system 

level, to systematically catalogue all molecules and their interactions within a living cell, 

rather than the characteristics of isolated parts of a cell or organism. Network modeling is 

characterized by viewing cells in terms of their underlying network structure at many 

different levels of detail is a cornerstone of systems biology.  Two emerging methodologies 

in network modeling provide invaluable insights into biological systems: static large-scale 

biological network modeling and dynamic quantitative modeling. Static large-scale 

biological network modeling focuses on integrating, visualizing and topologically modeling 

all kinds of omics data sets which are produced by innovative high throughput screening 

biotechnologies. Dynamic quantitative modeling focuses on exploring dynamics of biological 

systems by applying computational simulation and mathematical modeling. 

To facilitate application of these methods in biological research and improve existing 

network modeling software, this work presents: i) OmicsViz and OmicsAnalyzer, software 

tools, dedicated to integrating and analyzing omics data sets in network context. ii) 

CytoModeler, software tool, dedicated to providing a bridge between static large-scale 

biological network modeling and dynamic quantitative modeling methods. It not only 

facilitates network design, model creation, and computational simulation but provides 

advanced visualization for simulation results.  iii) Comparative network modeling application 

in the systems biology of the SM-SNARE protein regulation in exocytotic membrane fusion.  

This work presents applications of biological network modeling methods to understand 

regulation mechanisms in complex biological systems. 
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CHAPTER 1.   INTRODUCTION 

1.1 Background 

Over a whole last century, classical reduction-based methodologies have dominated 

biological research, providing a wealth of knowledge about individual cellular components 

and their functions. However, it is increasingly evident that an isolated biological function 

can only rarely be attributed to an individual molecule. Instead, most biological 

characteristics arise from complex interactions between the cell’s numerous constituents, 

such as proteins, DNA and RNA [1]. Therefore, a key challenge for biology in the century is 

to understand the structure and the dynamics of the complex intercellular web of at system 

level.  Systems biology is a biology-based interdisciplinary study field that concentrates on 

the systematic studying of the complex interactions in biological systems, using a new 

perspective (holism instead of reduction). Network biology as one of core constituents in 

systems biology provides the way to understand biological processes by defining the network 

structure of the processes based on integration of a variety of experimental data, which 

allows the expertise from large and well-mapped non-biological systems to be used to 

characterize the intricate relationships that govern biological functions. 

1.2 Network Diagram 

The behavior of most complex systems, from the cell to the Internet, emerges from the 

orchestrated activity of many components that interact with each other through pairwise 

interactions. At a highly abstract level, the components can be reduced to a series of nodes 

that are connected to each other by links, with each link representing the interactions between 

two components. The nodes and links together form a network, or, in more formal 
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mathematical language, a graph. Biological interactions at many different levels of detail, 

from the atomic interactions in a folded protein structure to the relationship of organisms in a 

population or ecosystem, can be modeled as networks. Physical interactions between 

molecules, such as protein–protein, protein–nucleic-acid and protein–metabolite interactions, 

can easily be conceptualized using the node-link nomenclature and the union of the 

interactions form a network which represent the system (Figure 1.1).  

 
Figure 1.1 An example of biological network. To study the network characteristics of the metabolism a graph 
theoretic description needs to be established. Here, the graph theoretic description for a simple pathway (catalysed 
by Mg2+-dependant enzymes) is illustrated (a). In the most abstract approach (b) all interacting metabolites are 
considered equally. The links between nodes represent reactions that interconvert one substrate into another. For 
many biological applications it is useful to ignore co-factors, such as the high energy- phosphate donor ATP, which 
results in a second type of mapping (c) that connects only the main source metabolites to the main products [1]. 

Nevertheless, more complex functional interactions can also be considered within this 

representation. For example, researchers use elastic network to provide insights on 

conformational dynamics and the longer-scale functional behaviors of macromolecules such 

as protein where nodes corresponding to alpha carbons of the amino acid residue and edges 

are the spatial interactions between nodes (amino acids) [2]. 
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Depending on the nature of the interactions, networks can be directed or undirected. In 

directed networks, the interaction between any two nodes has a well-defined direction, which 

represents, for example, the direction of material flow from a substrate to a product in a 

metabolic reaction, or the direction of information flow from a transcription factor to the 

gene that it regulates. In undirected networks, the links do not have an assigned direction. For 

example, in protein interaction networks, a link represents a mutual binding relationship: if 

protein A binds to protein B, then protein B also binds to protein A. 

1.3 Two major methodologies to model biological systems in network 

Having identified network representations of biological systems, researchers apply 

various approaches to link them with existing knowledge and seek better understanding of 

biological processes:  

1.3.1 Static large-scale biological network modeling 

Ever since 40 years ago, biologists have contemplated the idea of modeling biological 

systems by gene regulatory circuits, and even of genome-scale genetic networks. In network 

modeling, nodes represent biochemical species and edges represent interactions between the 

species. Recent progress in high-throughput screening technology in molecular biology [3, 4] 

enables us to focus on cell’s macromolecular components and their interactions such as 

protein–protein, protein–DNA and protein–RNA at system scale and make insights into the 

fundamental properties of the collective behavior of a large number of interacting 

components.  These kinds of biotech are able to test interactive relations of tens of thousands 

of biological compounds simultaneously and therefore to offer much more complete view for 

biological systems than traditional biological experiment techniques.  
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Consequently, as a preliminary step for modeling very large scale data in biological 

networks, new methods are needed.  Static large-scale biological network modeling analysis 

is emerging for this need. It mainly includes the following areas:  

(1) Construct/ infer functional biological network/pathway from omics and experimental 

data. Many studies construct or infer various biological networks, such as gene regulatory 

network, metabolic network, and protein- protein interaction network which describe certain 

biological process or species-scale system by using innovative high throughput screening 

technologies such as microarray and proteomics [3-7]. These constructed networks provide a 

whole view of target biological systems. 

(2) Integrate hetero-omics data across species and data type by network model. In this 

step, researches try to use constructed network models to integrate all kinds of type 

experimental data together and then present complete view for target systems at different 

levels of details [8].  

(3) Topologically analyze biological network. In this step, researchers try to connect the 

topological features of biological networks with biological function, design principles of 

regulation mechanism and evolution of the systems. For example, studies suggest cellular 

networks are scale-free and small world [1]. In a scale free network, a few highly connected 

nodes, dominate the network. The number of nodes with a given degree follows a power law 

(e.g. in protein-protein interaction network). From another perspective, studies of Hartwell et 

al. present a biologically relevant definition of modules as discrete units of function separable 

from the rest of the system [9]. These methods shed light on topologies of the cellular 

networks and their functional organizations. However, they either limit the analyses in single 
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organism interaction networks or they have subjectively and simply comparative 

interpretations solely based on their own topological perspectives.   

(4) Comparatively analyze biological network. As with the success of BLAST in 

comparative genomics, in biology, a strategy of comparison of biological network across 

species or systems may offer a valuable framework for addressing many biological 

challenges, such as inference of unknown biological function or elements by comparing 

network model of well-studied systems with the network model of newly-investigated 

systems [10]. Recent articles have discussed various approaches to align and score the 

biological networks based on the graph theory. Restricting the alignment to mutually 

homologous nodes and constructing an ortholog graph, Koyuturk et al. [11] formulate the 

alignment of PPIN(protein protein interaction network) into a problem of searching for heavy 

subgraphs (highly-interconnected subgraph) in an ortholog graph.  Pinter et al. [12] analyze 

metabolic pathways by using subtree homeomorphism, which requires that all input 

metabolic pathways have linear structures. Kelley and colleagues [13] use sequence 

alignment algorithm to evaluate similarity between pairwise networks along paths of 

connected nodes. Further, Sharan et al. [14] explore how to have multiple network 

comparisons across three species  rather than pairwise.   

(5) Visualize biological network and analytical results. Visualization of biological data is 

crucial in helping to understanding complex biological systems [15]. However, with such 

huge size of data sets with high heterogeneities, visualization of large scale biological 

networks is challenging. In this area, researchers have proposed a wide range of visualization 

methods such as 2D, 2.5D and 3D and develop many software tools such as Cytoscape [16] 
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to facilitate effective visualization of large scale biological networks and their associated 

analytical results [17].  

1.3.2 Dynamic Quantitative modeling 

Quantitative modeling in biology can be traced back to early last century when scientists 

applied mathematical and physical methods to study fundamental mechanisms of biological 

systems even without concrete biological data [18]. In particular, in the last decade, as the 

advances in bio-experimental, computational technologies and network modeling, 

quantitatively modeling biological systems has been boosted: many crucial parameters which 

were immeasurable before can be read out by innovative wet-lab biotechnologies and the 

increasing computer performances allow in silico simulation experiments in much wider 

scale and less time cost than before.  

Therefore, many formalisms are developed to quantitative model biological systems, 

such as Boolean networks , Bayesian networks, and their generalizations, partial and ordinary 

differential equations, stochastic equations, algebraic equations, Monte-Carlo simulation, 

large-scale agent-based computer simulation and so on [19, 20].   

Researchers in this methodology build dynamical model according to existing network 

structure and investigate system behaviors over time under various conditions and predict 

complex behaviors in response to complex stimuli, coupling computational and mathematical 

simulation and various system analysis strategies such as steady, bifurcation, sensitivity and 

robustness analysis. These rapid and inexpensive in silico experiments via dynamical 

modeling can be used to gain first insights, form hypotheses, and conceive and carry out 

meaningful tests. Utilizing dynamical modeling for understanding critical parameters, 
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biologists can technically and statistically design physical experiments for maximum efficacy. 

Resultant data from all experiments will be compared against simulations in various ways to 

test assumptions and hypotheses, identify new phenomena, and spark new theories.  

1.4 Proposed methods and contributions of this work 

This work concentrates on developing effective software tools for network modeling and 

an application of the network modeling methodology for the exocytosis processes.  

First, we present two software tools: OmicsViz [21] and OmicsAnalyzer [22]. These 

tools are dedicated to providing an effective omics data integration, visualization and 

analysis across different species and data sets in network environment.  

Second, we focus on offering biologists a user-friendly software tool to facilitate 

network designing, network analysis and quantitative modeling in biology. We present a 

software tool, CytoModeler, an open-source java application based on Cytoscape platform 

[16]. It provides an efficient network design interface, integrates many network analysis 

methods provided by Cytoscape and it plug-ins, offers a convenient built-in simulator based 

on ISBJava library [23] and the ability to connect to third-party sophisticated quantitative 

modeling software, and advanced visualization for simulation results in network context.   

Third, the work combines comparative network analysis and quantitative modeling to 

analyze regulation mechanism of SNARE proteins and Sec1/Munc18 (SM) proteins in 

exocytosis.  

SNARE proteins and Sec1/Munc18 (SM) proteins are two essential protein families in 

vesicular fusion. SNARE proteins execute the fusion process by forming a four-helical 

bundle complex (SNAREpin). However, the general understanding of the interactions 
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between SM proteins remain uncertain partly due to disparate SM-SNARE binding modes 

that have been observed in different organisms and secretory pathways 

We built two SM-SNARE protein interaction networks (SSN) in exocytotic pathways, 

using substantial experimental data about the SM and SNARE protein binding mode for a 

non-regulated cascade-like network in yeast and a regulated feedback-loop-like neuronal 

synaptic network. Comparative analysis of the networks showed that different combinations 

of SM-SNARE binding modes may lead to divergence of regulatory function in the SM-

SNARE network across species or cell types. Dynamical analysis and simulation 

demonstrates different system behaviors in the two SM-SNARE networks, which may 

explain contradictory experimental observations for the adaptation to physiological variations 

across the secretory pathways. 

These findings are consistent with current experimental observations. This suggests that 

the divergence of SM-SNARE protein binding modes may lead to reconfiguration of the 

regulation mechanism of SM-SNARE system in different organisms or tissues. In particular, 

these results provide a useful approach to understand the differences among SM-SNARE 

experimental observations and generalize SM proteins function to two basic control 

mechanisms. 

1.5 Organization  

In Chapter 2, we introduce two software tools: OmicsViz and OmicsAnalyzer. In 

Chapter 3, we introduce the CytoModeler software tool, including: Architecture of 

CytoModeler, CytoModeler model editor, CytoModeler SBML exchanger, CytoModeler 

simulation interface, CytoModeler visualizer. In Chapter 4, we introduce work using 
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comparative network design in different secretory pathways to explain the SM-SNARE 

regulation mechanism, including: 1. Construction of two SM-SNARE networks. 2. Network 

comparison analysis to extract the crucial distinct between two SM-SNARE networks. 3. In 

silico experiments reveal differential system behaviors of SM regulation. In Chapter 5, we 

made conclusion for this work. 
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CHAPTER 2.   OMICSVIZ AND OMICSANALYZER FOR INTEGRATING AND 
ANALYZING OMICS DATA IN NETWORK CONTEXT 

2.1 Network provides graceful and concrete modeling platform to integrate complex 
large-scale biological datasets. 

Nowadays, biological projects and experiments become much more complex and bigger 

in scope and data that are produced are magnitudes higher than in the past. The increasing 

use of innovative high-throughput technologies multiplies the amount of data generated per 

experiments, such as genomics, proteomics and transcriptomics [24]. The underlying data 

sets show a growing complexity and dynamics and are produced by numerous heterogeneous 

application areas. The integration of heterogeneous types of data is therefore gaining in 

importance: it should help to reduce the problems caused by false positives and false 

negatives obtained from single approaches, lead to better functional annotations for gene 

products and functional relationships between them, and allow the formulation of 

increasingly relevant biological hypotheses. Computational methods can then be used to 

model biological processes based on integrated data. 

Networks, as specified by graphs in mathematics, can represent biological interactions 

and integration of biological information in the form of extensive networks consisting of 

vertices, denoting nodes of individual bio-entities, and edges, describing connections 

between vertices. In the simplest example two vertices are linked by only one relationship, 

but connections can express different types of relationships between two elements, such as an 

evolutionary relationship, the existence of a shared protein domain, the fact that they belong 

to the same protein family or that two genes that are co-expressed in an experiment.  
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An interactive visual representation of information together with data analysis 

techniques on top of network platform equip biologists with powerful tools to simplify the 

interpretation and integration of dataset and analyze the dataset, extract meaningful 

information and use them to answer some of the fundamental biological questions. 

The development of high-level languages and platform neutral binaries, such as Java 

(Sun Microsystems Inc., 1994), plus the Internet as medium for dissemination has 

dramatically accelerated the transition time from inception to prototype to working 

application. Other new advances in computational technology include software to implement 

distributed object technology which provides easier access to remote databases, platform-

neutral programming languages allowing "write once, use anywhere" applications and the 

development of libraries of reusable object-oriented software components, or widgets, from 

which developers may create customized applications.  

Based upon these advances, a wide variety of tools was developed over the past years 

that map data on 2D networks to visualize biological interactions or relationships between 

bio-entities, such as Medusa [25], Cytoscape [16], Osprey [26], BioLayout Express3D [27], 

ProViz [28],PATIKA [29], PIVOT [30] and so on. 

These techniques of visualization have roles not only in analysis, but also in building 

more user-friendly interfaces, implementing method to navigate large information spaces 

intuitively and powerful techniques to browse and query data. However, the challenges still 

remain due to complexity of biological dataset and interaction between the dataset and 

biologists. For example, integrating multiple independent datasets and mapping such datasets 

across species and gaining biological insight are challenging. And there is a big gap between 

analysis and visualization. Most existing visualization tools only incorporate a limited 
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number of data analysis functionalities, making it necessary to constantly switch between 

different applications. 

Facing these challenges, we developed two plug-in software based on Cytoscape 

network visualization and analysis platform: OmicsViz [21] and OmicsAnalyzer [22] to 

improve the data integration and visualization and statistics functionalities of Cytoscape 

software platform. 

2.2  Introduction to Cytoscape 

Cytoscape is a standalone Java application. It is an open source project under LGPL 

license. Cytoscape mainly provides 2D representations and is suitable for large-scale network 

analysis with hundredth thousands of nodes and edges. It can support directed, undirected 

and weighted graphs and comes with powerful visual styles that allow the user to change the 

properties of nodes or edges. The tool provides a variety of layout algorithms including 

cyclic and spring-embedded layouts. Furthermore, expression data can be mapped as node 

color, label, border thickness, or border color. 

Cytoscape comes with various data parsers or filters that make it compatible with other 

tools. The file formats that are supported to save or load the graphs are SIF, GML, XGMML, 

BioPAX, PSI-MI, SBML, and OBO. Cytoscape also allows the user to import mRNA 

expression profiles, gene functional annotations from the Gene Ontology (GO) and KEGG 

database. Users can also directly import GO Terms and annotations from OBO and Gene 

Association files. 

It is highly interactive and the user can zoom in or out and browse the network (Figure 

2.1). The status of the network as well as the edge or node properties can be saved and 
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reloaded. In addition, Cytoscape comes with a network manager to easily organize multiple 

networks. The user can have many different panels that hold the status of the network at 

different time points which makes it an efficient tool to compare networks between each 

other. It also comes with efficient network filtering capabilities. Users can select subsets of 

nodes and/or interactions and search for active sub networks or pathway modules. It 

incorporates statistical analysis of the network and it makes it easy to cluster or detect highly 

interconnected regions. 

 

Figure 2.1 The Cytoscape Desktop. The Cytoscape canvas displays network data. The toolbar (top) contains the 
command buttons. The name of each command button is shown when the mouse pointer hovers over it. The Control 
Panel (left) displays the Network tree viewer, which lists the available networks by name and size. The Network 
Overview Pane (lower left) shows the current network in white and the displayed portion in blue. Finally, the Data 
Panel (lower right) can be used to display node, edge and network attribute data. The Cytoscape Desktop shows the 
sample network and expression data, with nodes colored by expression values from lowest (green) to highest (red) 
[31]. 
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Cytoscape also provides a friendly extensible interface which helps the user to easily 

develop plug-in software to allow more specialized analysis of networks and molecular 

profiles.   

2.3 OmicsViz: Cytoscape plug-in for visualizing omics data across species 

OmicsViz is a Cytoscape plug-in for mapping and visualizing large-scale omics datasets 

across species, including those with many-to-many mappings between homologs. This allows 

users to map their data onto pathways of related model organisms. Mapping schemas across 

species or different experimental protocols allow users to comparatively analyze the omics 

data. The data can also be visualized in parallel-coordinate plots. 

Node attributes in Cytoscape characterize elements with specific name IDs and diverse 

biological information, such as subcellular location, node type, etc. Edges reflect the 

interactions or other relations between the nodes. OmicsViz associates experimental datasets 

from transcriptomic, proteomic and metabolomic datasets with biological network models in 

Cytoscape according to node attribute information. 

2.3.1 Omics data import and mapping 

OmicsViz maps labeled measurements in the input experimental data to target nodes if 

the names are identical. However, due to inconsistencies in nomenclature, different names 

may be used to describe experimental quantities and network nodes, which actually refer to 

the same biological component in one species. One common example is that microarray 

datasets use gene probe IDs but metabolic pathways use gene locus names. OmicsViz 

provides a mapping file which translates between locus IDs and probe IDs to load 

transcriptomic data into the network model.  
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A unique feature of OmicsViz is that it deals with problems caused by many-to-many 

mappings between nodes due to homologs or uncertainty as to which node was matched or 

which compartment it occurs in. The matched homologs are represented by newly created 

nodes and connected to target nodes. Functionally, they are grouped into HomologGroups 

(implemented using CyGroups) with the target nodes. The cross-species transcriptomic data, 

therefore, can be loaded into target species network. Combining further visualization and 

comparative analysis, one can easily explore biological insights for both species based on 

prior knowledge and omics experimental observations. The imported data can be stored as a 

Cytoscape pvals file.  

The mapping rules between the labels in the data file, X, and the node names in the 

active graph, Y, ( )F X Y→  where { }1, , NX x x= K  and { }1, , MY y y= K can be summarized as: 

If ( )iF x maps to a unique value of yj (i.e., a one-to-one mapping), then the data associated 

with xi is mapped as attributes of node, yj. 

If ( )iF x maps to multiple values of Y, then the data is mapped to the set of 

nodes, ( ){ }iy y F x= . 

If multiple values of X, defined as the set, Xi, map to a set of nodes in the graph, i.e., 

( ){ }ix X y y F x∈ =U , then additional “homolog” nodes and edges connected to these nodes are 

added to the graph. The attributes of the newly-created nodes are the same as the parent node. 

OmicsViz uses data files in formats ranging from comma separated value files to Excel 

spreadsheets to take advantage of data from PLEXdb [32, 33], GEO, and other microarray 

databases. OmicsViz can map multiple datasets to networks at the same time. This helps 
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users to compare results across datasets. The plug-in dynamically updates the CyNode 

attribute panel and lists all selected datasets. 

2.3.2 Data Visualization 

OmicsViz provides line chart visualization component for loaded omics datasets using 

the JFreeChart library [34] (Figure 2.2). The experimental data associated with nodes in the 

network can be displayed on a parallel coordinate plot. The parallel coordinates of line chart 

delineate the variability of omics data with respect to different treatments and time points. 

The plot window can be controlled by users by adjusting parameters, such as line colors, axis 

ranges and labels 

 

Figure 2.2  OmicsViz plugin control panel screenshot. The highlighted yellow nodes show mapped Vitis homologs 
onto an Arabidopsis gene locus. The parallel coordinate plot of the expression data is shown in the upper right 
corner [21]. 
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2.3.3  Usage example 

OmicsViz is also able to import transcriptomic data into Cytoscape network platform 

across species to facilitate further comparative survey. For example, the Arabidopsis genome 

has been completely sequenced and the annotation is well developed. Grape (Vitis vinifera), 

has only recently been sequenced and most genes are electronically inferred. The reciprocal 

better BLAST hits method [35] can produce whole-genome scale homolog mappings 

between species. This forms a basis for the mapping of Omics data from a less-studied 

organism to the network model developed for the plant model organism, Arabidopsis. The 

better BLAST hit method gives a set of possible homologs between species. This example 

uses TBLASTN for each Arabidopsis protein sequence against the Vitis consensus sequences 

on the Affymetrix Vitis GeneChip to find the top five grape hits and BLASTX to find the top 

five hits from Arabidopsis for each Vitis sequence.  If Arabidopsis gene A and Vitis probeset 

B are reciprocal hits, A and B then are grouped as a possible homolog pair. This gives a 

many-to-many mapping relationship. Mappings for many plant species can be found in the 

sample data files available with the OmicsViz plugin. The microarray data is from 

experiment VV2 in PLEXdb (www.plexdb.org).  OmicsViz also manages multiple datasets 

which are associated with specific networks. It enables users to compare datasets of interest 

and dynamically update the CyNode attribute panel and switch between corresponding 

datasets. 

2.4  OmicsAnalyzer: a Cytoscape plug-in suite for modeling omics data 

The widespread use of omics-related biotechnologies has led to many heterogeneous 

omics datasets. Software packages facilitate the interpretation of omics data by using graph 

models where nodes represent bio-elements and edges are bio-interactions between these 
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elements [36]. However, the complexity of biological systems and omics datasets require an 

integrative analytical environment, which allows [24] network manipulation at different 

levels of detail, flexible mappings between multiple omics datasets coupled with data 

visualization and providing statistical analysis and system simulation and visualization of  

resulting analysis.  

Cytoscape [16], an open-source platform soft-ware dedicated to network modeling in 

biology, provides a highly flexible environment for combining these elements. To meet the 

above requirements, OmicsAnalyzer provides (i) integrates hetero-omics data within species 

or across species, (ii) performs statistical analysis correlation for exploring relations between 

the datasets, (iii) and visualizes the omics information and resulting analysis in a network 

context. 

2.4.1 Architecture of OmicsAnalyzer  

The key features of OmicsAnalyzer are presented in three levels (Figure 2.3): data 

collection and pre-processing level, statistical level and visualization level which function 

both independently as stand-alone tools and also communicate each other to facilitate the 

systems level analysis.  
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Figure 2.3 Architecture of OmicsAnalyzer 

2.4.2  Data collection and pre-processing 

In the first level, data collection and pre-processing, there are two modules: network 

generator and omics data integration. The network generator enables the user to define 

subnetworks of interest with respect to topology at different levels of detail such as cycle, 

dense module or network motif, instead of limiting user to the entire network which is 

imported from outside databases. OmicsAnalyzer manipulates the network by 

communicating with the Cytoscape platform or third-part plug-ins. Specific functionality 

includes (i) selection of arbitrary subnetworks using a graphical editor provided by 

Cytoscape, (ii) defining special-interest networks based on network motifs, cycles, modules, 

shortest paths determined by existing Cytoscape plug-ins, such as SubgraphCreator. The 

Omics data integration module is based on our previously developed plug-in, OmicsViz[21]. 

This module integrates homo or hetero omics datasets with networks, maps omics datasets 

across species and also manages the imported datasets. The integration allows users to 
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compare omics data across related networks to gain insights into biological dynamics and 

function. 

2.4.3  OmicsAnalyzer Statistical Analysis  

OmicsAnalyzer offers a variety of statistical functionalities for data analysis.  At first, 

relationships or common patterns in the data can be found by calculation of correlation. 

OmicsAnalyzer provides three approaches to calculate correlation including Pearson, 

Spearman's rank and Kendall correlation coefficient. The Pearson correlation coefficient is 

visualized with a color coded diagram frame (Figure 2.4). Alternatively, Spearman's rank 

order correlation coefficient may be used, which is more robust against outliers. For the 

interactive analysis when a reference node is selected and the correlation with all remaining 

nodes is visualized by different node colors. 

 

Figure 2.4  OmicsAnalyzer statistical panel provides the correlation calculation and cluster functions. The three 
nodes (highlighted by green, blue, red) are user-selecting key nodes. OmicsAnalyzer then calculates correlation 
relationship between the three key nodes and other nodes in the network. If the resulting correlation coefficient 
between two nodes is beyond the threshold value, OmicsAnalyzer categorizes them in the same cluster and 
highlighted with corresponding color of key node. The picture shows three resulting clusters. 
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To create a correlation network from a number of selected substance nodes, the 

correlation between all possible pairs of nodes can be calculated, Subsequently all nodes are 

assigned to clusters, based on the best matching SOM node. As a result the substances are 

grouped according to similar patterns. These clusters can be color-coded (Figure 2.4). Similar 

patterns are easily discovered visually even if they are widely spread over the picture. 

Relationships or common patterns in the data can also be found by plotting the 

measurement values for a defined set of substances inside a scatter plot matrix (Figure 2.5).  

This matrix displays the measurement values for all combinations of the selected substance 

nodes. 

 

Figure 2.5  OmicsAnalyzer offers scatter plotting function to show the correlation relationship between pairwise 
experimental data. 
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2.4.4  OmicsAnalyzer Visualization  

OmicsAnalyzer provides an innovative approach to visualizing experimental data in 

network context. Experimental data associated to specific biological compounds such as gene 

and protein are firstly plotted in chart-style pictures (line, bar and pie charts provided) and 

the pictures are then rendered onto nodes in network view which correspond these biological 

compound (Figure 2.6). Experimental data of different genotypes or plants may be shown 

within a single diagram inside each substance node, or shown in separate diagrams. The 

drawing style of the diagrams may be modified with a number of parameters such as series 

colors, the display of range or category labels, and line widths. As the system supports 

replicate measurement values in the data input form, the standard deviation (SD) or the 

standard error of the mean (SEM) may be shown as an error bar in both kinds of diagrams. 

 

Figure 2.6 OmicsAnalyzer shows experimental data onto to the node in network context with multiple chart styles. 
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2.4.4.1  OmicsAnalyzers Animation 

Animation supports efficient and timely analysis of large amounts of multi-dimensional 

data. OmicsAnalyzer Animation highlights dynamic changes over experimental conditions 

(time, treatment, dosage, tissue, disease) and allows the user to observe important sub 

pathways and key genes that influence other parts of the pathway. There two animation 

modes in OmicsAnalyzer: global and local. In global mode, OmicsAnalyzer plays the 

animation in the context of the whole network for each node and each edge by creating color-

mapping for the network components according to their associated experimental data. In 

local mode, user can select the specific targets from the whole network such as gene clusters, 

protein complex and sub pathways of interests, and show the animation within individual 

panel with chart style (Figure 2.7-Figure 2.9).  In the panel, the user can easily zoom in and 

out to examine the dynamics of experimental data in details.  

 

Figure 2.7 OmicsAnalyzer provides animation functions in two ways: global and local. In Cytoscape main panel, 
OmicsAnalyzer animate the whole network according experimental value at each condition. A color mapping is 
created to map experimental value to specific color. In this picture, blue corresponds MIN experimental value, -1 
and red corresponds MAX experimental value, 1.  The colors representing other experimental values continuously 
transfer between blue and red. In left corner panel, OmicsAnalyzer offers a local animation view for specific nodes 
which mostly attract user’s interest, which are picked by user.  This the first frame of the animation. 



www.manaraa.com

24 
 

 

Figure 2.8 The second frame of the animation. 
 

 

Figure 2.9 The third frame of the animation. 
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CHAPTER 3.   CYTOMODELER, A TOOL FOR BRIDGING LARGE SCALE 
NETWORK ANALYSIS AND DYNAMIC QUANTITATIVE MODELING 

Recent emergences of innovative biotechnologies support the large scale biological 

network analysis and quantitative modeling.  However, connection of the two methodologies 

is still difficult. Here, we present CytoModeler, an open-source Java application based on the 

Cytoscape platform. It creates a bridge between large scale network analysis and quantitative 

modeling by fusing the functionality of Omics analysis of Cytoscape platform, various 

computational simulators and network context visualizations. 

3.1 Introduction 

In last decade, emergent biotechnologies, such as high-throughput screening have 

produced a huge amount of large-scale biological datasets. These data potentially provide a 

description of many biological processes and functions at a system level. Therefore, 

dedicated software tools that enable biologists to explore these new data and connect them 

with biology systems are needed [24].  In systems biology, two kinds of software tools are 

extensively used to model and analyze biological processes at system level: large scale 

network analysis and quantitative differential equation modeling. 

Large scale network analysis applies network to model large scale omics data, where 

nodes represent biological species and edges between nodes stand for reaction between the 

species [1, 37, 38].  First, diverse types of omics data can be reconstructed as networks or 

integrated into existing networks, where the nodes and edges own a variety of attributes, such 

as species name, cellular location, molecular type, organisms and so on, which describe the 

network components. Furthermore, based on the networks, numerous analytical methods, 

ranging from statistics to machine learning, are developed to extract hidden information and 
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to translate the omics data to enhance our understanding of biological systems as whole. To 

facilitate such complicated analyses of large scale networks, it is necessary to develop 

efficient and user-friendly tools. Significant progress has been made in development of 

software which focus on large scale network and omics data analysis [16, 36, 39-42] over last 

ten years. Cytoscape, being a popular open source software platform among these tools, 

serves as a community-based framework for systems biology modeling. It provides not only 

a rich functionality for large scale network visualization and for viewing and editing data, but 

also a highly flexible and extensible plug-in mechanism [43]. To date, over a hundred 

Cytoscape plug-ins are developed, which can be categorized as: analysis, network and 

attribute I/O, network inference, functional enrichment, communication/scripting plug-ins 

[44]. Through these functional plug-ins, users can do much more than viewing a network but 

can compare different networks [45], cluster networks into subnetworks or other statistical 

analyses according to the contained omics data [46-48], examine Gene Ontology (GO) terms 

for a set of genes [49], align protein sequences [50], and view structures of protein [51] .  

The development of quantitative modeling has a much longer history than large-scale 

network analysis. It can be traced back to the last century when theoretical models were 

developed to study complex biological system such as metabolic analysis [52-54]. In this 

method, researchers build mathematical equations for biological systems and simulate, 

predict and test behaviors of the systems in silico. Furthermore, through analysis of the 

steady states, robustness/sensitivity of the equations, researchers try to interpret how the 

systems are regulated and how they operate. In last decade, advances in bio-experimental and 

computational technologies have boosted the quantitative modeling of biological systems. 

Many crucial parameters which were immeasurable before can be read out by innovative 
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wet-lab biotechnologies. Therefore, many software tools have been developed for 

quantitatively creating and analyzing biological models [55]. For example, the Systems 

Biology Toolbox [56] is a commercial software tool based on MATLAB; COPASI [57] 

provides predefined rate laws functions and also stochastic and deterministic simulation 

algorithms; Systems Biology Workbench (SBW) [58] offers a tool suite which include many 

functional modules ranging from JDesigner for graphical model editing, Jarnac for command 

line based simulation [59], to a Bifurcation Discovery Tool. Several standard formats are also 

proposed for facilitating exchange of modeling information such as systems biology markup 

language (SBML) [60]. 

While a number of active software tools of these two methods grow fast, the 

communication between them is missing. It is necessary that information of biological 

systems inferred from large scale network analysis are further quantitatively modeled for 

examining dynamics of the systems with respect to various physiological conditions or time 

course, which is crucial to understand function of the systems and guiding design of next step 

wet-lab experiments. Therefore, this work developed CytoModeler, a software tool dedicated 

to bridging large scale network analysis and quantitative modeling by providing the 

following features: i) Access to a wide range of functionality for large scale network analysis 

by being a plug-in tool on Cytoscape platform, ii) A built-in compact quantitative model 

editor which enables model creating, importing and exporting with several formats including 

SBML level1 and 2, iii) A modeling exchanger through which users can transfer modeling 

information between Cytoscape and quantitative modeling tools such as Systems Biology 

Toolbox (SBT) on MATLAB [56], COPASI [57] and Systems Biology Workbench (SBW) 

[58], iv) Advanced visualization for quantitative simulation results in a network context with 
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both static and dynamic point views. Therefore, CytoModeler enables biologists to integrate 

large scale network analysis and quantitative modeling into an analytical workflow of 

systems biology.   

The rest of the paper is organized as follows: we first introduce the architecture of 

CytoModeler. Second, we demonstrate functionality of the built-in model editor. Third, we 

present a built-in CytoModeler model simulator, communication with third part simulators, 

and visualization of simulation results. Finally, we present a case study about how to use 

CytoModeler to model exocytosis pathway.  

3.1.1 Architecture of CytoModeler 

To serving a bridge between large scale analysis and quantitative modeling, 

CytoModeler is built on Java programming language and Cytoscape platform and connects to 

software tools dedicated to quantitative modeling in systems biology. Figure 3.1 shows an 

architecture diagram of CytoModeler. 

The architecture of CytoModeler is categorized into four functional components (Figure 

3.1). The first component, CytoModeler Model Editor, is a built-in equation editor. It offers 

concise model editing function by using CyNodes, CyNetworks and HyperEdges (CyNode: a 

basic element in Cytoscape to represent node in biological network; CyNetwork, a basic 

element in Cytoscape to represent biological network; HyperEdge, a special type of edge 

which is able to represent biochemical reaction.) of the Cytoscape platform. It also provides a 

model transformer which enables communication with other Cytoscape function plug-ins. 

Furthermore, it allows users to import and export the edited model as several formats such as 

SBML [60]. The CytoModeler Simulation Interface gives users multiple choices for 
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simulating the model. It is based on an improved version of ISBJava [23]. This simulator 

offers many numerical solvers including stochastic algorithm (detailed in Simulation section). 

If a user needs more sophisticated systems analysis such as bifurcation analysis, 

CytoModeler Simulation Interface can connect with the modeling information with other 

dedicated analytical tools such as SBT on MATLAB, SBW and COPASI to facilitate the 

further system analysis using Java interface and SBML [60] standard file format. The 

architecture is extensible so it can be integrated with more third part systems biology tool. 

The third component, CytoModeler SBML Exchanger, serves as communication center for 

exchanging modeling information between Cytoscape, SBT on MATLAB, SBW and 

COPASI using SBML standard format. The fourth component, CytoModeler Visualizer 

provides user advanced visualization for simulation in network context. There are a various 

visualization modes for user including both static and dynamic point of views.  

 

Figure 3.1 Architecture of CytoModeler 
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3.1.2 CytoModeler Model Editor 

The CytoModeler Model Editor (CMME) is a plug-in component. CMME has a 

graphical editing function for kinetic equation that uses the Cytoscape graphical interface 

framework and network element classes which allows access to all the functionality for large 

scale network analysis provided by Cytoscape itself. CMME also uses the Cytoscape node 

attribute panel for a graphical representation of kinetic model and also a form-based editor. 

The graphical style kinetic model editing interface in CMME is based on basic elements 

of Cytoscape network (Figure 3.2 left). The editor uses CyNodes (Figure 3.2 left) to 

represent biochemical species such as protein, gene, and ligands in all kinds of biological 

kinetic models. To represent reactions between the species, the editor uses HyperEdges, a 

particular Cytoscape edge which consists of a group of CyEdges and a unique CyNode -- 

Connector node (Figure 3.2 left) and is able to represent a variety of reaction types. With a 

set of CyNodes and HyperEdges, a CyNetwork shows a biological kinetic model in the 

Cytoscape canvas where user can freely manipulate the model elements using a mouse.  

  

Figure 3.2 CyNode, HyperEdge, CyNetwork and Reaction palette.  Three CyNodes and one HyperEdge in a 
CyNetwork 01 construct a biochemical reaction J1, which has an identifier connector labeled by J1(left) and 
Reaction palette. The palette provides 9 different type reactions (right) . 
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To help user easily create different reactions, CytoModeler Model editor provides a 

reaction palette (Figure 3.2 right) where there are 9 different reaction types such as one to 

one reaction, and triple to triple reaction. User can add the reactions to a set of species nodes 

by predefined order.  

Once a reaction is fully created, user can input relate model parameters, such as the 

initial population of species, rate constants, reaction stoichiometry and so on for the reaction 

and its reactants and products through reaction and species property editors (Figure 3.3) 

which can be invoked by double clicking the edges, connector nodes or species nodes.  

User can also edit kinetic models through the Cytoscape data panel (Figure 3.4). 

Cytoscape use node, edge, and network attribute to integrate biological information into 

network model.  The Cytoscape data panel permits browsing the attributes in form-based 

styles. A row stands for an entity such as a node, edge or network. Every column of the row 

presents all attribute values associated with the entity.  CytoModeler uses CyNode (species 

node) to represent biological species and a HyperEdge to represent a biochemical reaction. In 

a HyperEdge, there is a unique CyNode, called Connector which identifies the HyperEdge 

and defines the reaction. Therefore, all kinetic model information can be stored in attributes 

of all the CyNodes including nodes for species and connector nodes for reactions.  Once a 

user opens the Cytoscape data panel in node attribute tab, they can view all the information 

and also input information to the current model such as initial concentration and reaction rate 

parameters by selecting the form cells of corresponding model elements. At the same time, 

the action will accordingly bring highlights of these edited model elements in a graphical 

network. Therefore, it provides an interactive feeling between model editing and the network 

context. 
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Figure 3.3 Reaction and species property editors. The left is reaction property editor and the right is species 
property editors. These editors provides various interface to allow user input model associated parameters. 

 

 

Figure 3.4 CytoModeler form-based editor 
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In addition to the direct editing function, The CytoModeler Model Editor also provides a 

model transformer which can transform normal CyNetwork into CMME model. It has a 

mechanism simple and easy to use: Through click the “Create Model from Current Network” 

button, user can transform nodes and edges from other CyNetworks into CytoModeler model 

network’s species and reactions. By this, it provide a way to make CyModeler use of 

functions of Cytoscape large scale network analysis. For example, by using Cytoscape, a user 

can construct a gene regulatory network from a microarray dataset and further group the 

network into many smaller network clusters according to gene expression profiles. When a 

user is interested in certain network cluster and therefore wants to further build kinetic model 

for the clusters to explore the dynamics of these gene interactions, the model transformer at 

this point gives user an easy and efficient way to transfer all the genes in the network cluster 

into a kinetic model by just clicking the button.  In another case, a user can apply a 

comparative network analysis for a large biological network on Cytoscape through functional 

plug-ins netMatch [45] and NetworkAnalyzer [61]. The result of the analysis reveals an 

interesting pathway hidden in the large network. The user wants to further simulate the 

pathway to its behavior under different experimental conditions. The CytoModeler Model 

editor now can fulfill this task easily by running the model transformer.  

3.1.3  CytoModeler SBML Exchanger 

CytoModeler SMBL Exchanger is a functional component responsible for exchanging 

kinetic modeling information such as model import, output and exchange between 

CytoModeler functional components, Cytoscape platform and other quantitative modeling 

software tools by using systems biology markup language (SBML) format.  Due to the 
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diverse architecture of different software tools, a common standard file format is crucial. We 

used SBML format.  

SBML is an eXtensible Markup Language (XML) which records mathematical 

expression information using of MathML [62]. SBML represents a model using hierarchical 

set of components which describe all kinds of biological and mathematical information at 

different level of details for the model such as species, reactions, compartments where 

reactions occur, function definitions for a mathematical functions which are used in defining 

reaction rate laws, parameters in the rate laws, initial assignments for model initial conditions 

and so on (refer to www.sbml.org for details). There are currently three levels of SBML. 

Compared to level 1, SBML level 2 integrate more components to describe model. Since 

SBML is widely accepted by systems biology community, it enables reuse of model across 

different software platforms and easy publication of model in the community.  

CytoModeler Exchanger is based on the SBML level 1 and 2 formats. It enables export 

and import of a model from SBML format and transforms current Cytoscape network into 

SBML format and allows data exchange across platforms. 

3.1.4 CytoModeler Simulation Interface 

To facilitate the analysis of dynamical behaviors of biological systems, the CytoModeler 

simulation interface provides two user-friendly methods for system simulation or further 

sophisticated analyses.  
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Figure 3.5 Simulation component interface. It provides options for users to apply simulation or further systems 
analysis. 

The first option is a simulation component (Figure 3.5) which provides model preview 

and update and various simulators which are based on ISBJava library [23] with both 

deterministic and stochastic algorithms, including stochastic simulators: Gibson-Bruck, 

Gillespie, Tauleap-complex and Tauleap-simple and deterministic simulators: ODE- 5th –
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order-Runge-Kutta-adaptive, ODEtoJava-dopr54-adaptive and ODEtoJava-imex443-stiff. 

After completion of model construction , users can go to the “Simulation” tab, preview the 

whole model input by them in human-readable format, update the model by just clicking on 

buttons in the tab, and then directly launch the built-in simulation interface (Figure 3.6) (This 

interface is implanted and improved from ISBJava library [23] by providing more functions 

such as advanced visualization control for simulation results ).  The interface enables the user 

to access many control elements to manipulate simulation such as different simulators listed 

above, time starting point and ending point, and step size. After setting all the control 

parameters, user can run the simulations and the result will be shown in a traditional X-Y 

plot other advanced visualization options in the simulation interface menu you can select 

(detailed in CytoModeler Visualizer section).  

 

Figure 3.6 A built-in simulator interface. The simulator is based on ISBJava library[23] and improved with many 
new features. 
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The second option for simulation is to connect the third-party software tools with built 

model information, which may provide not only simulation but also more sophisticate 

functionality for systems analysis. These tools might include parameter sensitivity, systems 

robustness or bifurcation which is valuable for providing insights into regulation mechanism 

of biological system. CytoModeler uses SBML Exchanger to seamlessly communicate with 

three quantitative modeling software tools: Systems Biology Toolbox (SBT) on MATLAB, 

Systems Biology Workbench (SBW) and COPASI.  

Systems Biology Toolbox (SBT) is a tool built on the MATLAB platform. CytoModeler 

only work with Systems Biology Toolbox version2.  It provides a wide range of functionality 

for quantitative analysis. These functions are represented in MATLAB script command and 

function programming style. For example, “cm  = SBmodel()”  command will create a new 

blank model object with name cm. If user is familiar with MATLAB, they can easy use 

SBT2. In particular, SBT v2 allows high speed simulation using CVODEs integrator package 

from SUNDIALS, which is stated the 30-150 times faster than ODE15s simulation solver 

and therefore quite useful for large-scale network model simulation.  The CytoModeler 

simulation interface connects SBT with SBML format modeling information edited by 

CytoModeler editor when user request launch SBT tool. The SBML-based modeling 

information is automatically packaged into a SBT model object and then user can use the 

object to perform any analysis provide by SBT2. 

Systems Biology Workbench (SBW), compared to SBT, is more interactive quantitative 

model tool. It is actually a software suite which consists of many functional modules: 

JDesigner for graphical model creation, Network Object Model (NOM) for SBML model 

manipulation, Jarnac [59] for simulation, Oscill8 for bifurcation analysis and so on.  These 
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modules are interconnected by peer to peer architecture and through any of them user can 

invoke other modules (SBW also can interconnect with CellDesigner [63], another popular 

modeling tool supporting Systems Biology Graphical Notation (SBGN) [64] format).  

CytoModeler simulation interface enables users to send created model to SBW modules and 

therefore provides a functional fusion between Cytoscape, a large scale network analysis tool 

and these quantitative modeling modules.  

Similarly, CytoModeler simulation interface interacts with COPASI [57] with a tree-

based representation for model elements, which is quite useful for systems with large size. 

Because CytoModeler simulation interface is designed in an extensible JAVA API, it easily 

implements further integration for more quantitative modeling software with Cytoscape for 

functional enrichment. 

3.1.5 CytoModeler Visualizer 

The CytoModeler visualizer enables advanced visualization for simulation result. 

Traditional visualization of simulation result usually consists of static X-Yplots of time 

versus concentrate or phase plane plots. As model sizes increase, the traditional X-Y plot gets 

cluttered and confusing and also lacks interaction with the model itself. To improve the 

traditional visualization, CytoModeler visualizer connects plotting of simulation result with 

network elements of model in Cytoscape interface. It enables an interactive visualization 

environment for user and simulation results and facilitates understanding of systems 

dynamical behaviors.  

There are two options for advanced visualization in the network context: static and 

dynamic. In static visualization mode, user can individually plot X-Y chart for simulation 
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result of each species in its corresponding CyNode view (it is similar with VANTED style 

[36]) (Figure 3.7)  or plot the X-Y chart in the Cytoscape data panel (Figure 3.8). In this 

choice, the X-Y chart for visualization of simulation result and network model canvas are 

shown in the same window. When user clicks any of the series for one biochemical species in 

the X-Y chart, it is highlighted and the node representing the species will be also highlighted 

(Figure 3.8). It therefore enables an interactive visualization mode for user.  

 

Figure 3.7 Static visualization of simulation result in network context 
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Figure 3.8 Static X-Y plotting visualization of simulation result in Cytoscape data panel. It provides an interactive 
way between simulation result and the network context. In the figure, one series in the X-Y plot in Data Panel is 
selected, the corresponding node in network canvas is also highlighted.  

In the dynamic visualization mode, CytoModeler visualizer uses animation to 

dynamically visualize simulation results in network element views. It offers user multiple 

choices: i) dynamically plotting X-Y chart for simulation result value of each species at each 

time point in its corresponding CyNode view (Figure 3.8), ii) dynamically cascading view 

(Figure 3.9). In this choice, numeric values of simulation result of a biochemical species are 

represented as areas with specific color. Different values are represented by different sizes of 
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areas. The whole network is shown as dynamical cascade and it enables clear views for how 

the concentration/population of every biochemical species changes, iii) shaking view. This 

choice provides more features for dynamical visualizing simulation result. It first calculates 

derivative of every series and then horizontally shakes CyNodes whose derivative of 

corresponding series is positive and vertically shakes CyNodes whose derivative of 

corresponding series is negative. Amplitude of the shaking is measured by numeric values of 

the derivatives. And the CytoModeler visualizer also uses two colors to identify different 

changing trends for each biochemical species. One color stands for increase of 

concentration/population of a biochemical species, another for decrease. For all the dynamic 

visualization methods, CytoModeler visualizer implements them in extensible Java and 

Cytoscape API and it can be easily extend for any new dynamic visualization methods 

supported by Cytoscape visual mechanisms.  

 



www.manaraa.com

42 
 

 

 

Figure 3.9 Dynamic visualization of simulation results in cascading mode. There shows two time frames: 0, 99 for the 
whole model.  
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3.2 An Usage Example: Build SM-SNARE Model Using CytoModeler 

Next, we show a usage example for CytoModeler by applying our previous SM-SNARE 

regulation model. We first used CytoModeler editor to create two network models for yeast 

and neuronal SM-SNARE regulation pathways (Figure 3.10 and Figure 3.11). All the 

proteins are presented in CyNode and all reactions between them are represented in 

HyperEdges. After inputting all parameter, the two models were simulated in the built-in 

simulator. The results are shown in static X-Y plot in Cytoscape Data Panel (Figure 3.8) and 

network context (Figure 3.13) and dynamically shown in cascading animation with 

comparison for two models’ simulation results (Figure 3.14). 

 

Figure 3.10 Neuronal SM-SNARE regulation pathway in CytoModeler 
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Figure 3.11 Yeast SM-SNARE pathway in CytoModeler 
 

 

Figure 3.12 Simulation results are shown in Cytoscape Data Panel. One series is selected and the corresponding 
node/species nSM is simultaneously highlighted. 
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Figure 3.13 X-Y plotting simulation results in network context 
 

  

Figure 3.14  A comparison for two models at final time frame of simulation results 
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CHAPTER 4.   QUANTITATIVE MODELING SNARE-SM REGULATION 

4.1 Background 

4.1.1  Exocytosis background 

Exocytosis forms the underpinning mechanism of cell to cell communication in 

multicellular organisms by means of leading the traffic of vesicles to bind to and fuse with 

plasma membrane, and thereby releasing its vesicle contents -- a wide range of extracellular 

signals into targeting cells (Figure 4.1). Great efforts have been made to decipher the nature 

of the process. It is thought that the central players in trafficking events is an array of 

evolutionarily conserved proteins which work as a team and orchestrate the process of 

vesicle docking and priming as well as the process of vesicle fusion. This cooperation 

necessitates a wealthy amount of interconnections and the process is best described as a 

network which governs the progression of exocytosis and emerges distinct structures and 

dynamics at different transition states. 

 
Figure 4.1 Exocytotic pathway.  Exocytosis consists of multiple intermediate steps such as vesicle tethering, docking 
to target membrane, and priming at the membrane and fusing with the membrane to release biochemical contents 
the vesicle carries. 
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SNARE proteins since they were first identified in late 1980s have been viewed as a 

interaction hub in the interactome functioning as a engine to drive membrane fusion [65]. 

Three or four of them coming from four subfamilies Qa-, Qb, Qc, and R- SNAREs [2, 3] 

(originally categorized as v-SNARE and t-SNARE according to their localization on vesicle 

or acceptor membrane [66]) initially assemble into a parallel four helical bundle trans-

complex (FHC/SNAREpin) to link two membranes together and then proceed to a cis-

complex to drive the membranes so close that the readily fuse with each other [67] (Figure 

4.2 and Figure 4.3). More recent studies suggest that SNARE proteins collaborate with a 

series of interaction partners and form a SNARE cycle to conduct the process of fusion [68].  

 
Figure 4.2 Molecular machinery of SNAREpin complex. SNAREpin is four-helical bundle complex, formed by 
synaptobrevin (green), SNAP25 (purple), syntaxin (blue) protein interactions. 
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Figure 4.3 SNAREpin serves a fusion engine to execute vesicle fusion with target membrane. It drives two 
membranes together and then stimulates membrane fusion between them.  

In addition to SNAREs, there are many regulatory protein involved in exocytosis to 

control progression of exocytosis. SM proteins (Sec/Munc-18 like proteins) , an essential 

regulatory protein, function as organizers to control SNAREpin conformation through 

diverse modes [69]. In regulated exocytosis, several late regulatory proteins including 

complexin and synaptotagmin [70] mediate crucial transition of SNAREpin states from loose 

trans to cis complexes [65, 71]. Complexins whereby freezing the fusion machinery at a late 

stage of SNARE cycle accumulate and prime SNAREpins to fuse in response to subsequent 

calcium influx detected by synaptotagmin, which is thought to serve as a universal sensor of 

calcium signaling [72-75]. Recent high-throughput proteomics studies revealed many other 

proteins involved in exocytotic membrane fusion and the whole exocytosis process [76-78].  
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Figure 4.4shows an exocytotic interactome describing a protein-protein interaction network 

which control exocytosis process).  

 
Figure 4.4 Exocytotic interactome 

The integration of data with large scale and existing observations remains challenging 

and new methods which enable to reveal regulation mechanism of complex exocytotic 

system which consists of interactions between SNARE and many regulatory proteins are 

needed [79]. 

4.1.2  SM-SNARE regulation background 

Cellular processes are regulated through intricate interactions of biological molecules, 

represented in network interactome models as ‘nodes’ and ‘edges’ [80]. Systems biology 

network modeling can be extensively applied to interpret experimental observations, explore 

regulation mechanisms of biological processes, and study the functional roles of specific 

molecular species. However, the complexity of cellular networks increases when there are 
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uncertainties or diversities in network topological structures, especially across organism or 

cell types.   

Sec/Munc-18 proteins (SM proteins) which regulate SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) proteins in exocytotic vesicular 

fusion, exemplify this complexity. Vesicular fusion during exocytosis, merging two separate 

phospholipid membranes into one, is one of the most fundamental cellular processes in all 

eukaryotic cells underlying many crucial biological processes. Like many biological 

processes, vesicular fusion is mediated by the interactions of several evolutionarily conserved 

protein families such as SM and SNARE.  The SNARE protein family play a central role [79] 

in vesicular fusion, where t-SNAREs (target membrane associated) and v-SNAREs (vesicle-

associated) assemble into a parallel four helical bundle complex (SNAREpin) to drive the 

two membranes close enough so that they readily fuse with each other [65].  

It is also evident that the SM protein family is essential in vesicle fusion, playing a 

crucial role in regulating SNARE proteins. In contrast to the consensus about the functional 

mechanisms of the SNARE family, contradictory experimental observations have been 

reported about the SM-SNARE regulation mechanism [81, 82]. SM proteins exhibit diverse 

binding modes to SNAREs. These binding modes can be generally categorized according to 

the binding partners of SM: the t-SNARE complex (pattern 1), the SNAREpin complex 

(pattern 2), or the mono-SNARE (pattern 3) [69, 81-83]. However, even within a certain 

binding pattern, SM proteins that come from different organisms or trafficking pathways 

exhibit hetero binding modes to their cognate SNAREs. A classic example is the neuronal 

SM protein Munc18-1 (pattern 3) which embraces monomeric syntaxin-1(t-SNARE) in 

closed conformation and prevents the formation of the SNAREpin complex. This suggests a 
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negative functional role for Munc18-1 (closed mode of binding of Munc18-syntaxin) [81, 84]. 

Other SM proteins such as Sly1 and Vps45 bind monomeric syntaxin-1 by interacting with 

its N-terminal peptide, which allows syntaxin-1 assembled into SNAREpin to facilitate the 

fusion [82]. This heterogeneity of binding modes between SM and SNARE proteins 

introduces uncertainties and complexity into the interaction network of regulation in 

vesicular fusion, and thus greatly complicates the understanding of key functional roles of the 

SM protein family in exocytosis. SM proteins have been proposed to be both positive and 

negative regulators in yeast and neuron [33, 85-90]. Rothman and Melia’s study for SM 

regulation in SNARE system provided predictive insights at the system level: the dynamics 

of the dual roles of SM may determine which outcome dominates in observed overall 

exocytosis [33]. 

For this complex system, a single mathematical or computational representation of the 

network does not sufficiently capture the whole range of system behaviors. So this work 

integrates comparative network modeling to solve the discrepancies in existing experimental 

observations and to elucidate the regulation mechanism of SM-SNARE system. Comparative 

methods enable us to infer protein functions and explore the regulation mechanism of cellular 

systems by comparing targets with well characterized and evolutionary related proteins and 

systems across species [10]. In addition, network modeling enables us to investigate complex 

biological functions without a priori mechanistic knowledge, by decomposing them into 

relatively independent and less-complicated sub-functions which are carried out by 

combinations of a set of biological network modules or motifs [9, 91, 92].  

This work compares two ensemble protein interaction maps for SM-SNARE network in 

exocytotic pathways based on the binding mode information: the cascade-like non-regulated 
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SSN in yeast and the feedback-loop-like regulated SSN neuronal synaptic pathways. 

Comparative topological analysis revealed that the closed mode of binding of Munc18-

syntaxin may be the critical factor that brings the complexity to highly regulated synaptic 

exocytosis in terms of network topology and system behaviors, compared to constitutive 

exocytosis. Next, computational simulations reveal bifurcation behavior in the neuronal 

system that might explain the discordance in studies of over-expressed SM protein. 

Furthermore, in silico mutation experiments confirm that the complex behaviors result from 

the closed mode of binding of Munc18-syntaxin. This analysis should help address the 

following important questions: What kind of functional role does SM play in exocytosis? 

Why are conflicting results observed in overexpression experiments of neuronal SM protein 

Munc18-1? What underlying mechanisms of regulation contribute to the complexity with 

respect to the design principles of the exocytotic system?  

4.2 Comparative construction of two SM-SNARE networks (SSN)  

This study began by constructing two SM-SNARE networks for yeast and neuronal 

synaptic exocytosis respectively to capture a wide range of SM-SNARE regulation. During 

the last decades, extensive genetic, physiological, biophysical and biochemical studies have 

focused on these two model systems because they represent two fundamental types of 

exocytosis: non-regulated (or constitutive) and regulated.  In yeast, the exocytotic pathway is 

non-regulated.  

The yeast pathway operates continually and supplies a continuous stream of vesicles 

containing lipids and proteins for the plasma membrane.  Yeast exocytotic SNAREs Sso1p 

(yeast syntaxin/t-SNARE), Sec9p (yeast SNAP25/t-SNARE) and Snc1/2p (yeast 
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synaptobrevin/ t-SNARE) mediate the vesicular fusion process. Sso1p and Sec9p 

preassemble into the acceptor t-SNARE complex. Then, Snc1/2p associates with the acceptor 

complex to form the SNAREpin complex, which acts as an engine to release biochemical 

energy to drive the vesicular and plasma membranes together. The yeast SM protein, Sec1p, 

regulates the SNARE complexes and the fusion rate by directly binding the t-SNARE 

complex (pattern 1) and the assembled SNAREpin (pattern 2) [86, 93]. In Figure 4.5, the 

nodes represent the SNARE, SM, and reactant complex. The edges describe the interactions 

between them. The process of exocytotic fusion is formalized as a feedforward set of 

interactions between the SNARE proteins and the SM protein. (To simplify the notation and 

emphasize homology between the networks, Table 1 gives the naming conventions for all 

models).  

In neurons, the synaptic exocytosis pathway is highly regulated in time and space, and it 

controls specialized neuron communication and the release of neurotransmitters contained by 

synaptic vesicles in response to calcium signals.  Despite the regulation, the core molecular 

machinery of the synaptic exocytosis pathway is evolutionarily related with that of yeast; for 

example, neuronal t-SNAREs, syntaxin-1 and SNAP25 pre-assemble into an acceptor t-

SNARE complex. The complex later reacts with VAMP (synaptobrevin/vesicle associated 

membrane protein) to form an assembled SNARE complex/SNAREpin. The neuronal SM 

protein Munc18-1 also binds to the intermediate acceptor t-SNARE complex (pattern 1) and 

assembled SNAREpin (pattern 2) to facilitate the membrane fusion.  Munc18-1 has an extra 

binding mode (closed mode of binding of Munc18-syntaxin) with syntaxin-1, which 

stabilizes syntaxin-1 in closed conformation, blocking the formation of the SNAREpin 

complex [94].  
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These dynamical models for each network enable examination for the behavior of the 

system (Methods). The models consist of differential equations with a set of initial 

conditions and reaction rates which are expressed by first- and second-order rate constants, 

based on the interaction diagrams in Figure 4.5 (see Methods for details). Following 

previous modeling studies in chromaffin  and P12 cells [95, 96], the concentrations of the 

SNAREpin and SNAREpin/SM complex quantitatively describe the progression of fusion 

(detailed in Methods). 

Table 4.1 Term abbreviations for yeast and neuronal SM-SNARE system. 

 Syntaxin SNAP25 Synaptobrevi
n 

SM t-SNARE 
complex 

t-SNARE/SM 
complex 

SNAREpin SNAREpin/S
M complex 

Yeast ySyx 
Sso1p 

yS25 
Sec9p 

ySyb 
Snc1/2p 

ySM 
Sec1p 

ytSN ytSNSM ySN ySNSM 

Neuron nSyx 
syntaxin-1 

nS25 
SNAP25 

nSyb 
VAMP2 

nSM 
Munc18-1 

ntSN ntSNSM nSN nSNSM 
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Figure 4.5 SM-SNARE network diversity (A) Formulated diagram of the yeast SSN in exocytosis. ySyx: yS25, 
ySyb and ySM describe Sso1p(yeast syntaxin), Sec9p(yeast SNAP25), Snc1/2p(yeast synaptobrevin) and 
Sec1p(SM), respectively. The logic network diagram on the left shows the cascade-like yeast SSN. (B) Formulated 
diagram of neuronal network in synaptic exocytosis, nSyx, nS25,nSyb and nSM to describe syntaxin-1, SNAP25, 
VAMP(neuronal synaptobrevin) and Munc18-1(neuronal SM), respectively. The logic network diagram on the 
left shows the feedback structure with modulation in the neuronal synaptic system. (C) Formulated diagram of 
mutant neuronal network in synaptic exocytosis, nSyx, nS25, nSyb and nSM to describe syntaxin-1, SNAP25, 
VAMP (neuronal synaptobrevin) and Munc18-1(neuronal SM), respectively. The logic network diagram on the 
left shows that the feedback structure is blocked due to mutant nSyx. 
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4.3 Network comparison analysis extracts the critical distinction between two SM-
SNARE networks 

The two SM-SNARE networks from yeast and neuron illustrate the design principles 

that underlie the divergence and complexity in the yeast and neuronal exocytotic systems. 

Network comparison analysis [10] explores the differences with respect to network structure, 

since the topological diversity of biological networks usually reflects the diversities of 

function, evolutionary selection, and regulation mechanism of cellular processes [91, 97]. 

The analysis showed that the unique neuronal SM-SNARE binding mode (closed mode of 

binding of Munc18-syntaxin) might be a critical factor that led to the structural divergence 

between the two SM-SNARE networks in yeast and neuron. In the yeast SSN, every 

component piece of SNAREpin/SM is sequentially assembled to an intermediate protein 

complex through a series of discrete levels. Therefore the network is cascade-like (Figure 

4.5A). In the neuronal SSN, there is a similar cascade branch to the one in yeast. However, 

there is another branch which is introduced by the neuronal closed mode of binding, 

Munc18-syntaxin. Due to this extra branch, nSyx (syntaxin-1) is inhibited by nSM (Munc18-

1) or it plays another functional roles by interacting nSM (Munc18-1), such as helping 

vesicle docking [90]. These two branches actually form a feedback loop because the acceptor 

t-SNARE complex and SNAREpin which formed through the cascade branch can also 

interact with nSM forming the SNAREpin/SM complex. This sequesters nSM (Munc18-1) 

away from the nSyx (syntaxin-1) and keeps nSyx from being inhibited in the closed mode 

(Figure 4.5B).  

The neuronal SM-SNARE binding mode (closed mode of binding of Munc18-syntaxin) 

radically changes the topology of the SM-SNARE network in neurons from that in yeast, 
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even as it conserves the cascade-like branch. This suggests that the binding mode drives the 

divergence of the SM-SNARE network regulation in the secretory pathways in the different 

systems, and introduces the complexity into the neuronal system.   

4.4 Comparative in silico experiments reveal differential system behaviors of SM 
regulation 

To further examine the effects of divergent SM-SNARE network structure on system 

behaviors, we investigated system behavior in response to SM regulation both in yeast and 

neurons, using the system models described above. We also compared our simulated results 

with experimental observations to validate the models and connect the model prediction with 

functional role of SM regulation.  

4.4.1 Yeast SSN Model predicts SM stimulates fusion in yeast 

The first simulation models system behaviors of the cascade-like yeast SM-SNARE 

network with respect to the ySM protein concentration.  The ySM positively regulates the 

fusion process as the amount of fusion shows a hyperbolic response to the ySM protein 

concentration. Figure 4.6A presents fusion curves of five simulated experiments with 

different ySM concentrations. Figure 4.6B depicts the steady-state fusion level of the system 

with respect to varying the initial concentration of ySM protein. This demonstrates that ySM 

plays a positive role that stimulates membrane fusion in both rate and amount.  

The simulation analysis agrees with experimental observations [86] in lipid mixing 

assays. This kind of assay utilizes the FRET pair fluorophores: nitrobenzoxadiazole (NBD) 

and rhodamine. The emission of NBD is muted by fluorescence resonance energy transfer. 

When fusion occurs between the fluorescent donor and unlabeled acceptor vesicles, the 

fluorescent probes (NBD and rhodamine) labeled on donor vesicles are diluted in the new 
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membrane and the emission of NBD is enhanced. The fluorescent intensity can measure the 

fusion level. More importantly, the reconstitution lipid mixing assay allows biologists to 

investigate the fusion event in vitro by precisely controlling the concentration ratio of 

SNARE proteins or other regulatory proteins. 

In [86], recombinant yeast SM protein Sec1p was added to the yeast SNARE 

reconstitution liposome system at different concentrations.  The effects of the stimulation on 

fusion show a monotonous dependent on Sec1p concentration (Figure 6D in [86]). When the 

levels of Secp1 are increased in the assay, an monotonic increase in fusion is observed [86].  

Therefore, the experimental observations verify the yeast SSN model prediction. 

 
Figure 4.6 Yeast SM-SNARE system analysis in silico (A) Fusion curves of five in silico experiments for different 
initial concentrations of the ySM protein using the network from figure 1A. (B) Final fusion levels of the yeast SSN 
at steady state with respect to concentration of the ySM protein. 

 

4.4.2 Neuronal SM-SNARE model predicts SM stimulates fusion in neuron but in 
more complex way 

The neuronal SSN model allows computational exploration of the system behaviors in 

the feedback-loop-like neuronal SM-SNARE network with respect to the nSM protein 

concentration. The results show a bifurcation. At reasonable physiological levels (the 

concentration of nSM is less than nSyx [82, 89]) nSM effectively stimulated the fusion. 
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However, under extreme conditions where concentration of nSM is larger than nSyx nSM 

concentration shows a negative relationship with fusion efficiency. It is hard to achieve this 

response under normal physiological conditions in vivo, as it requires the level of nSM 

protein concentration to be much larger than that of t-SNARE. This contradicts the fact that 

syntaxin-1(tSNARE) outnumbers Munc18-1(nSM) [82, 89].  

Specifically, we found when the concentration of nSM is below the bifurcation point, 

nSM stimulates the fusion process; once the concentration goes beyond the point, then nSM 

starts to inhibit fusion. Therefore, by analyzing the bistable system response to nSM protein 

amount, we can explain the conflicting experimental data. Figure 4.7A shows fusion curves 

of five simulated experiments with different nSM concentration. Figure 4.7A shows that 

nSM plays either a positive or negative role depending on the dose. Overall, nSM stimulates 

the fusion level compared to the basal SNARE system without nSM regulation. However, 

when the level of nSM increases beyond the bifurcation point (abnormal physiological 

condition), the stimulation efficiency decreases and nSM may also play a negative factor at 

the extreme physiological condition. This system behavior differs from that of the cascade 

SM-SNARE system in which the fusion level monotonically increases with the level of ySM.   

Figure 4.7B describe fusion amount of the neuronal SSN with respect to the initial 

concentration of the nSM protein at steady state. When the concentration of nSM is less than 

or equal to SNAREs, it functions as a promoter to stimulate fusion and the stimulation 

reaches maximum when the concentration ratio of SM and t-SNARE is 1. When the 

concentration of nSM increases beyond the concentration of t-SNARE, its stimulation effect 

decreases. Beyond the bifurcation point, nSM functions as a negative regulator which inhibits 

fusion. 



www.manaraa.com

60 
 

 
Figure 4.7 Neuronal SM-SNARE system analysis in silico (A) Fusion curves of five in silico experiments for 
different initial concentrations of the nSM protein using the network from figure 1B. (B) Final fusion levels of the 
neuronal SSN at steady state with respect to the concentration of the nSM protein. 

This finding reconciles current conflicting experimental observations for functions of 

neuronal SM Munc18-1. In addition, it reveals the regulation mechanism between neuronal 

SNARE and SM proteins. Shen’s [33] in vitro lipid mixing assay study shows that Munc18-1 

stimulates liposome fusion and the stimulation effect achieve maximum when ratio of 

syntaxin-1/Munc18-1 is around 1, which exactly confirms the neuronal SSN model 

prediction. An in vivo study by Wu et al. [85], showed that overexpression of the Drosophila 

SM protein strongly inhibits evoked and spontaneous neurotransmitter release which is 

mostly based on synaptic vesicle fusion with the target membrane. Simulations of SM 

overexpression in the neuronal SSN (Figure 4.8) predict the inhibiting effects [85, 98]. 

Furthermore, increasing the concentrations of both nSM and nSxy prevented the inhibition of 

fusion. This reproduces observations in studies [85, 99] and confirms the hypothesis that the 

relative levels of nSM with respect to nSxy are critical for the efficiency of exocytotic fusion 

[81].   
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Figure 4.8 nSM Overexpression analysis in silico The relative levels of nSM and nSyx are crucial for fusion 
outcome. When nSM is overexpressed, fusion is inhibited (red line); when both nSM and nSyx are overexpressed, 
fusion proceeds (purple line). 

 

4.4.3 Simulated mutations confirm in neuronal SM-SNARE network 

The above in silico analyses show different behaviors of yeast and neuronal SM-SNARE 

systems. According to the comparative network analysis, the neuronal closed mode of 

binding of Munc18-syntaxin of SM-SNARE is a key factor in the divergence of the two 

systems in terms of network topology. We performed a perturbation analysis in silico to 

eliminate the neuronal nSM binding to closed nSyx (closed mode of binding of Munc18-

syntaxin)(see Figure 4.5C). To comparatively analyze the effect of the in silico mutation, the 

mutant nSM system was simulated with five different nSM concentrations. Figure 4.9A 

depicts the fusion curves of the five simulations for the mutant nSM system. Figure 4.9B 

compares the amount of fusion at steady-state for the three systems in Figure 4.5with respect 

to the initial concentration of nSM protein. The simulation results show that the mutant 
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neuronal SSN shows similar behavior with the yeast SSN. The fusion is amplified by 

increasing the concentration of mutant nSM protein and the stimulation effect monotonically 

increases with the concentration of the mutant nSM protein. This indicates that neuronal nSM 

binding to closed nSyx (closed mode of binding of Munc18-syntaxin) may be the key factor 

in inducing the structural divergence of SM-SNARE network in yeast and neuron.  

 
Figure 4.9  Mutant neuronal SM-SNARE system analysis in silico (A) Fusion curves of five in silico experiments 
with different initial concentrations of the nSM protein in the mutant neuronal SSN system which eliminates the 
nSM(Munc18-1) binding to closed nSyx(syntaxin-1) (Figure 1C). (B) A comparison of fusion levels between the 
yeast SSN, neuronal SSN, mutant SSN at steady state with respect to the SM protein concentration.  

 

4.5 Discussion  

In summary, we applied comparative systems biology methodologies to analyze the 

dynamics of the SM protein family that regulates the SNARE protein in exocytotic fusion in 

both yeast and neuron, and explored the connection between the dynamics and the network 

structure. Cellular functions are mediated by the networks of interacting molecules that 

operate at different levels and different structure of organizations [9, 91]. Through 

comparative network construction and topological analysis, this approach investigates system 

level differences between the regulation mechanisms of SM-SNARE interactions in 

exocytotic fusion. The results suggest that the yeast SM-SNARE network has a distinct 

regulation architecture from the neuronal SM-SNARE network. The unique neuronal SM 
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protein binding to closed syntaxin-1 is a critical factor in the divergence of network topology, 

which transforms the neuronal SM-SNARE network from a cascade into a feedback structure 

by introducing an interaction-specific alteration to the SM-SNARE network. The distinct 

binding mode introduces complexity into system regulation: in silico experiments indicate 

that feedback-loop-like neuronal SM-SNARE presents bifurcation behaviors with respect to 

the neuronal SM protein concentration, compared to the simple monotonic system response 

in yeast SM-SNARE system.  It suggests that when the concentration of neuronal SM protein 

goes beyond a certain value, its functional role reverses and it inhibits exocytotic fusion. This 

explains the conflicting experimental observations for neuronal SM protein and Munc18-1.   

4.5.1 The SM proteins 

SM is confirmed as the positive regulator on exocytotic membrane fusion both in the 

yeast and neuronal system. In yeast, SM monotonically stimulates the fusion progression as 

its concentration increases, according to both in silico and in vitro experiments. In neurons, 

SM affects the fusion rate depending on the ratio of the concentrations of nSM and nSyx. 

However, going beyond the bifurcation point is unlikely to occur under normal physiological 

conditions as studies have shown that the t-SNARE protein nSyx outnumbers nSM [82, 89]. 

Going beyond the bifurcation point requires that the level of nSM exceeds the amount of t-

SNARE protein. 

This work brings a new perspective on why many studies which explore the functional 

role of SM protein by applying overexpression of the SM proteins appear contradictory. 

However, it should be noted that the mechanism of neuronal exocytosis in vivo is more 
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complex and further experiments which can monitor the dynamics of SM protein 

concentration in temporal and spatial extents are needed to validate the bifurcation behaviors. 

4.5.2 The unique binding mode of nSM (Munc18-1) 

Another intriguing observation is that the neuronal SM protein Munc18-1 binding to 

closed syntaxin-1 appears to be the critical difference between the yeast and neuronal SSNs. 

The classic binding mode of neuronal SM protein was identified as a negative factor for 

exocytotic membrane fusion because it stabilizes the closed syntaxin-1 and therefore 

prevents it from formation of SNAREpin. New insights from Sudhof’s lab [90] demonstrate 

that the neuronal SM protein binding mode functions facilitate the vesicle docking to target 

membrane.  Our study demonstrates both functions at the level of regulatory mechanism. 

This binding mode combined with other modes of Munc18-1 to t-SNARE and SNAREpin 

complexes creates a feedback SM-SNARE regulation system, which precisely controls 

exocytosis by cooperatively working with other regulatory factors, complexin and 

synaptotagmin proteins [79] to meet the requirements of fast neuronal release.  

4.5.3 The SM-SNARE network 

This study connects topology of SM-SNARE network with the regulation mechanism of 

systems and biological functions in exocytosis. We identified two structures for the SM-

SNARE network: cascade in yeast and feedback in neurons. Both models have demonstrated 

robustness in a large working parameter space (Methods) and reproduce a variety of 

functional experimental observations.  

Mounting evidence suggests that complex biological functions can be decomposed into 

relatively independent subfunctions. The modules/motifs responding to input signal and 
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surrounding perturbations depending on their topology [91]. These combinations of 

modules/motif not only provide functional robustness but also flexibility that may be critical 

for system to evolve and adapt in a great range of evolutionary and functional constraints. 

More complex function can be hierarchically built via the combinations of simple and robust 

functional modules/motif [100].  

This SSN analysis presents the modular design principle in the exocytosis process. The 

SSN subfunction executes the exocytosis function by combining with other subfunctions, 

such as signaling calcium influx. In simple constitutive exocytosis of yeast, the cascade SM-

SNARE network robustly functions in exocytotic membrane fusion. In contrast, neuron 

exocytosis must be tightly regulated to temporal and spatial factors. To meet the variances in 

physiological requirements, the new module/motif introduced by neuronal-specific Munc18-

1 binding to closed syntaxin-1 combines with the conserved cascade-like module produce the 

new feedback-loop-like module/motif. The new combination allows more complex functions 

in neuronal exocytotic fusion than in yeast. Working with other subfunctions operated by 

other modular combinations such as protein complexin and synaptotagmin, the SM-SNARE 

system forms an exquisite regulation mechanism to control complex neuronal exocytosis. 

4.6 Methods 

4.6.1 Mathematical formulation of SM-SNARE regulations 

For the two SM-SNARE networks, we constructed dynamical models for them to 

examine effects of the different network topologies of regulation, on the behavior of the 

system.  

The models consist of differential equations with a set of parameters and non-zero initial 

conditions, based on previously characterized interaction diagrams. We in our models 
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integrated multiple simultaneous input signals and examine quantitative effects of them on 

the systems by considering supply stimulus and degradations of SM and SNARE proteins 

because numerous studies in vivo exam the physiological behaviors by controlling supply 

input signals such as overexpression or deletion of SM genes. For each model, the state of the 

system is described by the concentrations of all relevant protein ( 1 2( ), ( )..., ( )nC t C t C t ). The 

rates of reactions are dependent on these concentrations and on biochemical rate constant 

parameters ( 1 2, ,..., nk k k ) and input supply rates ( 1 2, ,..., np p p ) and protein degradation rates 

( 1 2, ,..., nu u u ). To describe the temporal behavior, systems of ODEs are provided in general 

form: 

                                                    
1, ...,

( , )i
i

i n

dC f
dt
=

= C K,S,U                                              (1) 

which describes the evolution of a set of state variables 1 2( ), ( )..., ( )nC t C t C t=C ;  K,S,U 

represent vectors of system parameters. It is assumed that the state C evolves in a subset C of 

Euclidean space, in which it is positive or non-negative that is always satisfied in 

biochemical application. In our model, we used protein family names: syntaxin, SNAP25, 

VAMP and SM to present model variable names for specific SNARE proteins and SM 

protein in different organisms, respectively. The whole systems are shown in Table 4.2 and 

Table 4.3.  
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Table 4.2 The yeast and neuronal SM-SNARE systems 

Yeast SSN Reactions Neuronal SSN Reactions 

1

1

2

2

4

4

5

5

6

6

25

fsnsm

fsn

k

k

k

k

k

k

k

k

k

k

k
1

k
2

12

ySyx yS ytSN

ytSN ySyb ySN

ySN ySM ySNSM

ytSN ySM ytSNSM

ytSNSM ySyb ySNSM

ySNSM fusion

ySN fusion

fusion fusion fusion

−

−

−

−

−

+

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯⎯→

⎯⎯→

=
 

1

1

2

2

3

3

4

4

5

5

6

6

25

fsnsm

fsn

k

k

k

k

k

k

k

k

k

k

k

k

k
1

k
2

nSyxSMClose

nSyx nS ntSN

ntSN nSyb nSN

nSyx nSM

nSN nSM nSNSM

ntSN nSM ntSNSM

ntSNSM nSyb nSNSM

nSNSM fusion

nSN fusion

fusion f

−

−

−

−

−

−

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯→+ ←⎯⎯

⎯⎯⎯→

⎯⎯→

= 12
usion fusion+

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 



www.manaraa.com

68 
 

Table 4.3 The equation sets of modeling yeast and neuronal SM-SNARE systems 

Yeast SSN Equation Neuronal SSN Equation 

1 1

1 2

2 6 3
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4.6.2 Bifurcation and Robustness Analysis of Parameters 

The kinetics simulation and search of the existence of a bistability were implemented in 

Matlab7.0R. Differential equations were solved using the ODE23s routine. The bifurcation 

analysis was completed in Systems Biology Toolbox [56].  

For testing the robustness of parameters, we generated 2000 random parameter sets 

using Latin Hypercube Sampling when all parameters are varied +/-30% relative to their 

original values. Here, we used a uniform probability distribution for each parameter (Table 

4.4).  
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Figure 4.10 Robustness of bifurcation in feedback neuronal SM-SNARE system. For any given initial concentration 
of SM protein (0.1µM, 12 µM), the percentage of parameter sets that exhibits bifurcation are plotted. No Fix: All of 
the parameters are varied +/-30% from its default value. Fix: The supply input rate of SNARE and SM family 
proteins (p1-p4) are fixed while all other parameters are varied +/-30% from its default value for each sample run. 
 

4.6.3 Initial Conditions, Parameters and Units 

Initial Conditions and Units. The concentrations of reactant proteins are given in molar 

units. For non-soluble proteins such as v-SNARE, Syb, we followed the [96] work and based 

the protein concentration estimation on the concentration of secretory vesicles in molar. 

During the exocytosis process, the vesicles cluster in active zone area in pool form. The size 

of vesicle pool varies with respect to different cell types or even species from 200 to 
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3000[101]. Therefore, the molar concentration of vesicles was estimated in the range of 0.2-

30 nm. Accordingly, the concentration of Syb is considered to be in an identical range of 

vesicle concentration (0.2-30 nm).  The t-SNARE proteins such as SNAP25 and syntaxin are 

thought to be vastly expressed in vivo and the studies [96, 102] evaluated the concentration of 

these protein in a range of 0.1-100 µm. The essential regulatory proteins, SM/Munc18 and 

displacement factor proteins such as Munc13 are known to be expressed at much lower levels, 

compared to SNARE proteins.  The concentrations of the proteins were taken in range of 1-

30 nm [78, 96, 101, 103].  

Rate constants. In our models, where available, we have relied on in vivo and in vitro 

biochemical experiments for parameter values [33, 95, 102, 104-107]. In cases where the 

values of biochemical parameter were not known yet, we estimated physically reasonable 

values based on a previous modeling study [96] which provided invaluable information on 

mining biochemical experiments for parameter values in vivo/in vitro and also approaches to 

estimating unknown parameters. It should be stressed that these available rate constants are 

measured independently and under different secretion systems which may be different 

quantitatively. However, because exocytosis process is highly conserved throughout different 

cell types, we integrated these rate constants into our kinetic equations which aim at 

providing insights into fundamental regulation mechanisms of protein interaction among two 

most essential protein families (SM and SNARE) during almost every type of exocytosis 

process [82, 94] and therefore our models can served as a framework for integration 

refinement from different systems through adding system-specific regulatory steps or fitting 

newly characterized kinetic features. 
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Table 4.4 System Parameters of the Models   Est. Estimated; Units: The total amounts of different species are 
expressed in units of molar (M). The first and second rate constants presented in units of  1s− and 1 1M s− −⋅ , 

respectively. The supply input rate constants ( ip , i=1…4) are presented in 1M s−⋅ . The degradation rate constants 

( iu , i=1…4) are presented in 1s− . 

Parameter Value Reference 

1k  4 1 1 4 1 11.6 10 ~ 7 10M s M s− − − −× ×  [108-111] 

1k−  3 1 2 15 10 ~ 7 10s s− − − −× ×  [108-110] 

2k  6 1 1 6 1 14 10 ~ 6 10M s M s− − − −× ×  [108-110] 

2k−  4 1 4 12 10 ~ 7 10s s− − − −× ×  [108-110] 

3k  6 1 1 6 1 16 10 ~ 7 10M s M s− − − −× ×  [107] 

3k−  4 1 3 19 10 ~ 7 10s s− − − −× ×  [106, 107] 

4k  6 1 1 6 1 16 10 ~ 9 10M s M s− − − −× ×  [33, 107] 

4k−  5 1 4 16 10 ~ 5 10s s− − − −× ×  [33, 107] 

5k  6 1 1 6 1 13 10 ~ 7 10M s M s− − − −× ×  [107] 

5k−  4 1 3 15 10 ~ 7 10s s− − − −× ×  [107] 

6k  6 1 1 6 1 13 10 ~ 7 10M s M s− − − −× ×  [107] 

6k−  4 1 3 15 10 ~ 7 10s s− − − −× ×  [107] 

fsnk  3 1 3 11.5 10 ~ 5 10s s− − − −× ×  [88, 112] 

fsnsmk  2 1 1 11.5 10 ~ 1 10s s− − − −× ×  [33, 88] 

7p  8 13 10 M s− −×  Est. from [96, 

2p  8 13 10 M s− −×  Est. from [96, 

3p  8 13 10 M s− −×  [96, 102] 

4p  9 18 10 M s− −×  Est. from [96, 

1u  6 1 6 11 10 ~ 3 10s s− − − −× ×  Est. from [96, 

2u  6 1 6 11 10 ~ 3 10s s− − − −× ×  Est. from [96, 

3u  6 1 6 11 10 ~ 3 10s s− − − −× ×  Est. from [96, 

4u  6 1 6 11 10 ~ 3 10s s− − − −× ×  Est. from [96, 

5u  7 1 7 13 10 ~ 6 10s s− − − −× ×  Est. from [96, 

6u  7 1 7 13 10 ~ 6 10s s− − − −× ×  Est. from [96, 

7u  7 1 7 13 10 ~ 6 10s s− − − −× ×  Est. from [96, 

8u  7 1 7 13 10 ~ 6 10s s− − − −× ×  Est. from [96, 

9u  7 1 7 13 10 ~ 6 10s s− − − −× ×  Est. from [96, 
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CHAPTER 5.   CONCLUSION 

5.1 Summary  

This work proposes a framework for exploring the regulation mechanism of exocytotic 

membrane fusion and facilitating application of systems biology methodologies in exocytosis 

process.  

Exocytosis is a key process in numerous biological systems. As innovative 

biotechnologies develop, many proteins are revealed in exocytosis process which is therefore 

shown in complex systems behaviors. It requires new methods to analyze such complex 

systems and explain experimental observations. We first use comparative network designing 

combining quantitative modeling to analyze the regulation of two key proteins families: SM 

and SNARE in exocytotic membrane fusion. It demonstrates that the topological structure of 

the SM-SNARE interaction network motif is an omnipresent factor that small change in 

structure of networks can dramatically modify the exocytotic system behaviors. It 

successfully reproduced current experimental observations and provided a bifurcation 

mechanism to explain conflicts observed in current studies. Therefore it provides an 

alternative way to bridge the consensus among SM-SNARE protein experimental 

observations and further analyze regulatory relationship between exocytotic proteins.  

Secondly, to facilitate application similar research for biologists, we developed a 

software tool, CytoModeler. It provides easy way to design biological network and execute 

model simulation. More important, it provides a way to bridging two kinds of systems 

biology software tools: large scale network analysis and quantitative modeling.  CytoModeler 

is built on large scale network analysis platform Cytoscape. Therefore, it can integrate all 
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functionality provided by Cytoscape and many functional plug-in tools, which are dedicated 

to modeling and analyzing large-scale network and Omics data. On the other hand, 

CytoModeler also provides built-in quantitative model creation, simulation function and 

provides a seamless connection with three popular quantitative modeling software tools: 

Systems Biology Toolbox, Systems Biology Workbench and COPASI. It enables user to take 

advantage of sophisticated modeling analysis functions for biological systems provided by 

these tools. Therefore, CytoModeler fuses these two major software tools in systems biology.  

5.2 Limitation and future work 

While SM-SNARE regulation plays a key role in controlling exocytotic membrane 

fusion, many other proteins are suggested important during the process, such as complexin, 

synaptotagmin, Munc13, we introduced in Chapter 1, and so on. This work is mainly just 

focused on SM and SNARE regulation and therefore further work which integrate more 

proteins with larger system context are needed. Also, the work suggested a bifurcation 

mechanism for explaining conflicting experiment observations for SM-SNARE regulation. 

Therefore, further experiments are needed to employ to test the predictions, such as 

designing mutant experimental system in vivo or in vitro to test our hypothesis. For 

CytoModeler, it provides a new way to visualize simulation results in network context. 

However, robustness and sensitivity of model are also key features for insuring correctly 

modeling and also potentially reflect design principle of target biological systems.  Therefore, 

the effective visualization of robustness and sensitivity of model are needed.   
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